Characterization of determinants for the specificity of Arabidopsis thioredoxins h in yeast complementation.
نویسندگان
چکیده
The disruption of the two thioredoxin genes in Saccharomyces cerevisiae leads to a complex phenotype, including the inability to use methionine sulfoxide as sulfur source, modified cell cycle parameters, reduced H(2)O(2) tolerance, and inability to use sulfate as sulfur source. Expression of one of the multiple Arabidopsis thaliana thioredoxins h in this mutant complements only some aspects of the phenotype, depending on the expressed thioredoxin: AtTRX2 or AtTRX3 induce methionine sulfoxide assimilation and restore a normal cell cycle. In addition AtTRX2 also confers growth on sulfate but no H(2)O(2) tolerance. In contrast, AtTRX3 does not confer growth on sulfate but induces H(2)O(2) tolerance. We have constructed hybrid proteins between these two thioredoxins and show that all information necessary for sulfate assimilation is present in the C-terminal part of AtTRX2, whereas some information needed for H(2)O(2) tolerance is located in the N-terminal part of AtTRX3. In addition, mutation of the atypical redox active site WCPPC to the classical site WCGPC restores some growth on sulfate. All these data suggest that the multiple Arabidopsis thioredoxins h originate from a totipotent ancestor with all the determinants necessary for interaction with the different thioredoxin target proteins. After duplications each member evolved by losing or masking some of the determinants.
منابع مشابه
Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)
In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...
متن کاملYeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction
SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...
متن کاملPsTRXh1 and PsTRXh2 are both pea h-type thioredoxins with antagonistic behavior in redox imbalances.
Thioredoxins (TRXs) are small ubiquitous oxidoreductases involved in disulfide bond reduction of a large panel of target proteins. The most complex cluster in the family of plant TRXs is formed by h-type TRXs. In Arabidopsis (Arabidopsis thaliana), nine members of this subgroup were described, which are less well known than their plastidial counterparts. The functional study of type-h TRXs is d...
متن کاملThe thioredoxin h system of higher plants.
In plants, thioredoxins h are encoded by a multigenic family of genes (eight in Arabidopsis thaliana, at least five in Populus sp.). The multiplicity of these isoforms raises the question of their specificity. This review focuses on thioredoxins h in two plant models: Arabidopsis and poplar. Thioredoxins h can be divided into three different subgroups according to the analysis of their primary ...
متن کاملIn vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae.
Whereas vertebrates possess only two thioredoxin genes, higher plants present a much greater diversity of thioredoxins. For example, Arabidopsis thaliana has five cytoplasmic thioredoxins (type h) and at least as many chloroplastic thioredoxins. The abundance of plant thioredoxins leads to the question whether the various plant thioredoxins play a similar role or have specific functions. Becaus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 41 شماره
صفحات -
تاریخ انتشار 2000